RESEARCH ARTICLE

OPEN ACCESS

Transport properties of Gum mediated synthesis of Indium Oxide (In₂O₃) Nano fluids

Ch. Kanchana Latha¹, Y. Aparna¹, Ramchander Merugu², D. Ravinder ³

¹Department of Physics, JNTUH, CEH, Kukatpally, Hyderabad, Telangana, India

² Department of Biochemistry, Mahatma Gandhi University, Nalgonda, Telangana, India

³*Department of Physics, Osmania University, Hyderabd- 500017, Telangana, India

ABSTRACT

Two- Step method has been applied to prepare stable In_2O_3 nano fluids in Ethylene Glycol with PVP (Polyvinyl pyrrolidone) used as stabilizing agent having In_2O_3 concentrations of 1% by volume, where the In_2O_3 nano particles are obtained by biosynthesis of Indium (III) Acetyl Acetonate and Gum Acacia. Since the two-step method is more versatile as it provides the opportunity to disperse a wide variety of nano particles in different types of base fluids. The nano fluids were characterised by UV-vis spectroscopy, FTIR, SEM, EDAX, and TEM, and systematically investigated for Thermal conductivity (TC), density, viscosity, specific gravity and electrical conductivity for different polymer concentrations. The size of nano particles was found to be in the range of 5-30nm for two different nano particle to PVP ratios. For higher concentration of polymer in nano fluid, nano particles were 20nm in size showing increase in Thermal conductivity but a decrease in density and viscosity which is due to the polymer structure around nano particles. It is observed that the viscosity, density & specific gravity increases with the increase in PVP concentration and decreases with temperature. The thermal conductivity measurements of nano fluids show substantial increment relative to the base fluid (Ethylene glycol). Effect of PVP Polymer on viscosity, density, specific gravity can have a significant effect on magnitude and behaviour of the Thermal conductivity enhancement confirming the Newtonian behaviour of nano fluid. This offers tremendous scope for developing compact and effective heat transfer equipment. An enhancement of 20-25% for 1:5 volume concentration are observed at an average voltage of 60V when compared with EG (Ethylene glycol) at the same voltage. This method is simple, fast and reliable for the synthesis of Newtonian nano fluids containing In₂O₃ nano particles.

I. Introduction

Nano fluid is a term proposed by Choi in 1995 of the Argonne National laboratory U.S.A. In recent years, nano fluids have attracted more and more attention ¹⁻⁵. Research in nano fluids has many potential applications ⁶⁻¹¹. Most of the reviews are concerned of the experimental and theoretical studies of the thermo physical properties of nano fluids ¹²⁻¹⁷. The two-step method is extensively used in the synthesis of oxide based nano fluids and it is the most economic method to produce nano fluids in large scale. Nano particles have the tendency to aggregate due to their high surface area and surface activity. The important technique to enhance the stability of nano particles in fluids is the use of surfactants. Several authors have argued that large TC increase is due to hydrodynamic effect of nanoparticles brownian motion ^{18,19}. Nano fluids have shown large enhancements in TC as compared to base fluid ²⁰ temperature and particle size dependence ^{21, 22} reduced friction coefficient ²³ and significant increase in critical flux ²⁴. In₂O₃ nano fluids are very stable due to the protective role of PVP, as it retards the growth and agglomeration of nano particles by steric effect. PVP is an efficient agent to improve the stability of suspension ²⁵. The steric effect of polymer dispersant is calculated by the concentration of the dispersant.

Fig.1 Flow chart of preparation of In₂O₃ nanoparticles

Phase change materials (Indium nano particles) in Polyalphalefin²⁶ have been synthesized using a one step.

In ₂ O ₃ : PVP weight ratio	Description
1:2	0.2g of In ₂ O ₃ with 0.4g of PVP in 200 ml EG
1:3	0.2g of In ₂ O ₃ with 0.6g of PVP in 200 ml EG
1:4	0.2g of In ₂ O ₃ with 0.8g of PVP in 200 ml EG
1:5	0.2g of In ₂ O ₃ with 1g of PVP in 200 ml EG

Table 1 Parameters for synthesis of In₂O₂ nano fluids

Characterization of nano fluids III.

UV-vis absorption spectrum (SHIMADAZU) has been recorded on Nano drop 1000 1-mm column in the wave length range (200-600 nm) at room temperature. SEM & EDX of In₂O₃ nano fluids on glass substrate is taken using HITACHI. TEM images have been taken by placing the nano fluid directly on copper grid and allowing the sample to evaporate naturally. FTIR spectrum was taken with a PerkinElmer Spectrometer. For this purpose, nano fluid is spread on NaCl crystal to form a film and subsequently dried in an oven for 15 minutes under low power allowing EG to evaporate. ANTON-PAAR Density Meter has been used to measure density and specific gravity of nano fluids in the temperature range of 30°C-60°C. CANNON-FENSKE kinematic

viscometer bath is used to measure the viscosity in the temperature range of 30°C-60°C. Electrical conductivity measurements were done with Microprocessor-based conductivity meter at room temperature for different concentrations. Steady state parallel method (Hilton Thermal Conductivity of liquids and gases Unit H471) is used to measure the thermal conductivity of nano fluids. The thermal conductivity can be expressed as

$$K = \frac{Q_c \Delta n}{A \Delta t}$$

where, Q_c – Heat transfer by conduction through the base fluid; Δr – Radial Clearance, A – Area of conduction path, and Δt – Temperature difference. so that the heat transfer coefficient is in linear behaviour with reference to the temperature difference/voltage.

Fig.2 UV-Vis absorption Spectrum of 1:2 (Sample1) and 1:5 (Sample 2) of In₂O₃ nano fluids

Fig.3 EDAX and SEM of (a) 1:2 (Sample 1) and (b) 1:5 (Sample 2) of In₂O₃ nfs

www.ijera.com

Ch. Kanchana Latha et al. Int. Journal of Engineering Research and Applications ISSN: 2248-9622, Vol. 6, Issue 1, (Part - 3) January 2016, pp.94-103

Fig.4 TEM and SAED pattern of (a) 1:2 (Sample 1) and (b) 1:5 (Sample 2) of In₂O₃ nfs

The position of the surface Plasmon absorption peak of In₂O₃ nano particles depends on the refractive index of the surrounding medium, particle size, absorbed polymer on the particle surface etc. figure 1 shows the UV-vis spectrum of the polymer stabilised In₂O₃ nano fluid in the wave length range of 200 to 600nm. A strong absorption is observed at 220 nm and 22 nm for samples (1:2 and 1:5) respectively as shown in fig.2 indicates the particle size dependence and PVP entrapment of In_2O_3 nano particles. It is observed that there is slight shift of curve for sample (1:5) at 221nm. Stabilization of nano fluids ²⁷ has been studied at room temperature for every 4 hours in 24 hours and it has been found that the obtained nano fluids are stable for more than 3 months in the stationary state. Excellent stability of the prepared nano fluid is due to the protective role of PVP as it retards the growth and agglomeration of nano particles²⁸ as shown in fig.2.

Figure 3 shows the SEM and EDAX of In_2O_3 nano fluids taken by preparing a film on glass substrate²⁹ confirming the presence of In_2O_3 nano particle in the nano fluid. SEM analysis shows the

spherical morphology of In₂O₃ nano particles. Analysis of EDAX shows In and O peaks located between 2 KeV and 4 KeV [30]. The chemical composition and purity of the products are also examined using EDAX. The EDAX spectrum revealed In and O as the only detectable elements, indicating that the sample is without any contamination and slightly carbon due to presence of PVP in the nano fluid. Their atomic ratio is close to 2:3 confirming that the nano particles are of In_2O_3 . The corresponding SAED pattern is displayed in Fig.4 showing the poly crystalline structure of In₂O₃ nano particles. The SAED pattern of the nano fluids and TEM images of the In₂O₃ nano particles PVP suspensions in the samples (1:2 and 1:5) with corresponding particle size distributions are shown in fig.4. The TEM images reveal that the nano particles are spherical in shape with size distribution between 5 to 10nm. The In₂O₃ nano particles are dispersed in colloidal solution as seen in TEM micro graph and the inter-planar spacings for different hkl values are coincident with the JCPDS standard data (06-0416) as shown in Table 2.

www.ijera.com

Fig.5 FTIR Spectra of (a) 1:2 (Sample 1), (b) 1:5 (Sample 2) of In₂O₃ nano fluids and (c) EG

The FTIR spectra of sample 1:2, 1:5 and EG as shown in fig.5(a), 5(b) and 5(c) respectively showing strong band due to amide carbonyl (present in PVP monomer) stretch vibration but shifts to 1649.1 cm-1 ^{31, 32}. Band displacement indicates attachment of

amide carbonyl oxygen with Indium. Ethylene Glycol oxidised products are not detectable in (a) and (b) indicating the presence of In_2O_3 . The two spectra resemble one another for the appearance of a prominent band at 2946 cm-1.

 Table 2: Interplanar spacing (dhkl) of nano fluid samples calculated from SAED (Selected Area Electron Diffraction) patterns in Fig 3 compared with the reference values in the standard data (JCPDS :06-0416)

S. No.	Sample 1:2 Nano fluid d _{hkl} (⁰ A)	Sample 1:5 Nano fluid d _{hkl} (^O A)	Standard data (JCPDS: 06-0416)	
			d _{hkl} (^O A)	hkl
1	3.163	2.9368	3.1234	111
2	2.757	2.686	2.7056	200
3	1.9124	1.901	1.9134	220
4	1.218	1.286	1.2414	420
5	1.592	1.5496	1.5622	222

Fig.6 Thermal Conductivity of Ethylene Glycol

Fig.7 Thermal Conductivity enhancement ratio for In₂O₃ nano fluids

Measured and reported Thermal conductivity of Ethylene Glycol with temperature difference are presented in fig.6. There is a close agreement between the observed and reported values of EG as can been seen from the fig.6. It is observed that the Thermal conductivity of EG decreases with temperature as reported ^{33, 34}. Measurement system has been calibrated before use by measuring TC of water at room temperature. Hence the smaller size and higher stability of the fluid lead to the enhanced TC. Fig.7 represents the thermal conductivity ratio for In₂O₃ nano fluid (TC normalised by that of base fluid (EG) with temperature difference). The variation of thermal conductivity ratio (K_{eff}/K_{b}) with temperature seems to be sigmoidal in nature showing slow to sharp increase with increase in temperature difference.

This variation is similar to the variation of (Keff/Kb) with volume % of particles ³⁵. This non linear behaviour in Keff/Kb can be explained on stochastic motion (Brownian motion) ³⁶ of the nano particles freed from PVP binding as the temperature difference increases. With increase in temperature nano particles diffuse through the polymer matrix. This also increases Brownian motion of nano particles causing convection to increase significantly with temperature causing thermal conductivity enhancement. Enhancement in TC of nano fluid cannot be explained by classical models. Differences between the experimental and classical model estimation have been reported earlier by many researchers ^{37, 38}.

Fig.10 Temperature vs. Viscosity of In₂O₃ nano fluids

Fig.11 Concentration vs. Electrical Conductivity of In₂O₃ nfs

Fig. 8 and fig. 9 represents the density and specific gravity at temperatures ranging from 30° C to

60°C. The viscosity of nano fluids depends on shear rate, nano particle size, surface area, surface

potential, polymer dispersed and temperature ³⁹. Fig. 10 shows that the viscosity increases with increased particle concentration and decreases with temperature ⁴⁰. It is observed that 1:2 and 1:5 nano fluid samples viscosity decreases than the viscosity of base fluid which shows good heat transfer for these fluid concentrations. Hence the higher polymer concentration increases electrical conductivity, thermal conductivity and decreases viscosity.

Also it is observed that the high TC and low viscosity, of samples (1:2 and 1:5) reveals that the In_2O_3 nano particles formed are stable. Hence the In_2O_3 nano fluids being polymer capped have shown low viscosity and high thermal conductivity.

V. Conclusions

We have successfully synthesised In₂O₃-PVP nano fluids having different concentration of PVP in room temperature by two-step method. The UV-vis spectra, TEM image, SEM and SAED pattern confirms the formation of In2O3 nano particles dispersed in PVP. Enhancement of Thermal conductivity, Electrical conductivity and decrement in viscosity are also in good agreement with the base fluid and it is suitable for large scale production. Nano fluid thermal study shows that a small amount (1% by vol) of In₂O₃ nano particle enhances the Thermal conductivity of base fluids substantially by 25%. High polymer concentration increases Thermal conductivity and decreases viscosity. The result presented here makes nano fluids more attractive as cooling fluid for devices with high energy density.

REFERENCES

- [1] Choi, S.; Siginer, D.; Wang, H. ASME (New York). (1995), 231:99-105.
- [2] Phelan E.; Bhattacharya P.; Prasher S.; Prasad V.; Jaluria Y.; Chen G. Annu Rev Heat Transf. (2005),14:255-275.
- [3] Lee S.; Choi S.; Li S.; Eastman A . *J Heat Transfer.* (1999), 121:280-289.
- [4] Masuda H.; Ebata A.; Teramae K.; Hishinuma N.; Bussei N. Japan 7. (1993), (4): 227-233.
- [5] Eastman A.; Choi S.; Li S.; Thompson J.; Lee, S. Material Research Society Symposium Proceedings, Pittsburgh, PA, (1997), vol.457: pp 3-11.
- [6] V. Trisaksri,; and S.Wongwises, "Critical review of heat transfer characteristics of nano fluids" Renewable and sustainable Energy Reviews. (2007), vol.II, no.3, PP.512-523. S.Ozerinc,; S.Kakac and A.G.Yazlcloglu, "Enhanced thermal conductivity of nano fluids: a state of the art review", Micro fluidics and Nano fluidics.(2010), vol.8, no.2, PP.145-170.

- [7] X.Q.Wang and A.S.Mujumdar, "Heat transfer characteristics of nano fluids: a review" International journal of Thermal sciences.(2007), vol.46, no.1, PP.1-19.
- [8] X.Q.Wang and A.S.Mujumdar, "A review of nano fluids-part 1: theoretical and numerical investigations", Brazilian journal of chemical engineering.(2008), vol.25, no.4, PP.613-630.
- [9] Y.Li,; J.Zhou,; S.Tung,; E.Schneider and S.Xi. "A review on development of nano fluid preparation and characterization", Powder Technology.(2009), vol.196, no.2, PP.89-101.
- [10] S.Kakac and A.Pramuanjaroenkij. "Review of convective heat transfer enhancement with nano fluids", International journal of Heat and Mass Transfe.(2009), vol.52, no.13-14, PP.3187-3196.
- Xie. H.; Wang. J.; Xi. T.; Liu. Y.; Ai. F.; Wu. Q. J Appl. Phys.(2002), 91 (7): 4568-4572.
- [12] Xuan. Y.; Le. Q. Int J Heat Fluid Flow. (2001), 21: 58-64.
- [13] Keblinski. P.; Phillpot. R.; Choi. S.; Eastman. A. Int J Heat Mass Transfer.(2002) 45:855-863.
- [14] Chopkar. M,; Kumar. S,; Bhandar. R,; Das. K,; Manna. 1. *Mat Sci Engg B.(2007), 139*: 141-148.
- [15] Das. K.; Putra. N.; Thiesen. P.; Roetzel. W. J Heat Transfer. (2003), 125: 567-574.
- [16] Patel. E.; Das. K.; Sundararajan. T.; Pradeep. T. *Pramara-J Phys.*(2005), 65(5): 863-869.
- [17] Jang. SP,; Choi. SUS. Appl Phys Lett.(2004), 84 (21): 4316-4318.
- [18] Prasher. S.; Bhattacharya. P.; Phelan. E. *Trans ASME.* (2006), 28: 588-595.
- [19] Gandhi. S. Current Science.(2007), 92 (6): 717-718.
- [20] Chon. CH,; Kihm. KD,; Lee. SP,; Choi. SUS. Appl Phys Lett. (2005,) 87: 153107.
- [21] Yang. B.; Han. ZH. Appl Phys Lett.(2006), 89: 083111.
- [22] Kostic. M. Multifunctional nano composites.(2006) In: Proc.MN 2006, Vol.17036, PP.1-9.
- [23] Yulong. D.; Alias. H.; Wen. D.; Williams.
 A. Int J Heat Mass Transfer. (2006), 49: 240-250.
- [24] Zhu. H.; Lin. Y.; Yin. Y. J Colloid *Int Sci* (2007), 277: 100-103.
- [25] Z.H.Han,; F.Y.Cau and B.Yang. "Synthesis and thermal characterization of phase-

changeable indium polyalphaolefin nano

fluids", Applied Physics letters.(2008), vol.92, no.24, Article ID 243104, 3 pages.

- [26] Y.Hwang,; J.K.Lee,; C.H.Lee etal. "Stability and thermal conductivity characteristics of nano fluids", Thermochimica Acta. (2007), vol.455, no.1-2, PP, 70-74.
- [27] Shervani. Z.; Ikushima. Y.; Sato. M.; Kawanami. H.; Hakuta. Y.; Yokoyama. T.; Nagase. T; Aramaki. K. *Colloid Polym Sci.*(2007), 007:1784-1788.
- [28] Yan. Y.; Kang. S.; Mu. J. Appl Surface Sci.(2007), 253: 4677-4679.
- Puchalski. M.; Dabrowski. P.; Olejniczak.
 W.; Krukowski, P.; Kowalczyk. P.; Polanski. P. *Materials Science-Poland.* (2007), 25 (2): 473-478.
- [30] Kalimuthu. K.; Babu. R.; Venkataraman. D.; Bilal. M.; Gurunathan. S. Colloids Surf B: Biointerfaces. (2008), 65:150-153.
- [31] Petravic. J. J Chem Phys.(2005), 123:174503.
- [32] Chopkar. M,; Das. P,; Manna. I. Scripta Materialia. (2006), 55:549-552.
- [33] Chon. HC,; Kihm. K,; Lee. SP,; Choi. SUS. *Appl Phys Lett.* (2005), 87:153107-153111.
- [34] Maxwell. JC. A treatise on electricity and magnetism. (1891), Clarendon, UK.
- [35] Wang. X.; Mujumdar. A. Int J Thermal Sci. (2007), 46:1-19.
- [36] Kathy. L.; Kessler .C. J Mater Sci. (2006), 41:5613-5618.
- [37] Yu. W.; Xie. H.; Chen. L.; Li. Y. " Investigation of the thermal conductivity and viscosity of ethylene glycol based Zno nano fluid," Thermochim Acta.(2009), 491: 92-92.
- [38] Li. D.; Xie. W.; Fang. W. "Preparation and properties of copper oil based nano fluids". Nano scale Res. Lett. (2011), 373:1-7.
- [39] Chang. H.; Jwo. C.; Lo. C.; Tsung. T.; Kao. M.; Lin. H. *Rev Adv Mater Sci.* (2006), 10: 128-132.